Secure Enclaves for Linux with KVM

Strengthening Security Measures in Linux Kernel-based Virtual
Machine (KVM) Environments through Penetration Testing and
Hypervisor Configuration

Nathaniel Desany, Nicholas Phillips, Zachary VanDerVelden

Marist University
CMPT 479 - Cybersecurity Capping

Dr. Casimer DeCusatis

In Conjunction With:
IBM, Fernando Pizzano

2024

Table of Contents

INErOAUCTION..cccicieeriiciiinriicisnnticssssnsnesssssssiessssssssssssssssssssssssssssssssnssssssssssssssssssssssssssesssssassssssssssssssse 4
YN 0] 1 v T F USRS 4
SUINIMATY ...ttt ettt e e et e e e ettt e e e sttt e e e e s naaeeeeennateeeeensseeesennnseeeesanssaeesanssaeesannss 4
CONEIDULIONS . cccuvviiiiiirnriiniisnrricssssnniessssnsissssssssess 6
INETOAUCTION. ...ttt ettt e st e et e e e tt e e esaeeesaeeensaeeenssaensseeensseeensseennns 6
Nathanie] DESANY.......ccccuiiiiiiiiicii et et e et e st e e e reeeeaeeessaeeessseeensseennns 6
INIChOIAS PRILIIPS.....viiiiiieeiiiecie ettt e e st e e s e e saeeessbeeesseeessaeennns 6
Zachary VanDErVEIA@N.c..eeiuiiiiiiieciii ettt ettt e e e e eareeennaeesnneeens 7
Project Plan 8
Weekly Traffic Light RePOTLS......cccivuiiiiriisirencsssnicssnisssnisssansssssnsssssssssssssssssssssssssssssssssssssssasssssas 10
INETOAUCTION. ...t ettt e et e et e e etaeeentaeeensaeesnsaeensseeesseeesseens 10
SeptembeEr 18, 2024.......oo ittt ettt e te e et e e st e e st ee e tb e e nbeeennaeeenreeenaaeeen 10
SePLEMDET 25, 2024ttt et e ettt e e et e e et e e et e e e beeeebaeeenaeeennraeenns 11

(@ 1e110) 015 G0N 0 11

(@ 1e110) 015 gL T 00 12
OCLODET 16, 2024 ssssnnsnnnnn 12

(@ 1e150) 015 G AR TN 0 13
OCLODET 30, 2024 nnnnnnn 14
INOVEIMDET 6, 2024ttt ettt ettt tee e tetetaae s et et et etesesesaseaassssaesesssasssssnsnsssnsasnnnnn 14
INOVEIMDET 13, 2024ttt ettt ettt ettt e e e et et et et et et et e e aae s e s et s aesssesssssasnssssansasnnnnns 16
INOVEMDET 20, 2024ttt ettt ettt ee et et e teaa s eee s aseseassesasesasassaesssssssasasasssssesnsnnnnn 16
INOVEIMDET 27, 2024 ...ttt ettt ettt e et e et e et et et et et eas s e s eaesesssesesssssssssasnsnsssesnsnnnnns 17
DECEMDBET 4, 2024..... et sseaesaaasasssnaesatnensnnnsnsnnnnnnnnnrnnn 17
December 11, 2024 ..o 17
Infrastructure Design DIagrams.......cccicieveecissercssnicssnisssnnessssnssases 18
Deployment 20
Installation of Initial Operating SYSIEML.......cccciiieiiieeiieeeieeee ettt e e e e e e 20
Virtualization and Hypervisor SETUP.......cccveeiiieiiiieeiiie ettt veeesreeesaeeesevee e 21
Common Vulnerabilities and Exposures 26
OVETVIEW...etieeeitieeeiite e ettt e etteesatee ettt e eateeesteeensaeeenstaeassaeeansaeeassaeeanseeeasseeensseeensseeesseeensseennseenn 26

(O BT U o7 15 o) 1 USRS 27
CVER2024-8354....e ettt ettt ettt ettt s et a e et e e h ettt s ae e et e b et enee e 28
FINAL ANALYSIS.....viiiiiiiiiieiieiee ettt ettt e e e et e eebe e beeesseessaeensaensaeenseenses 34
CVER2010-2184....eeeeee ettt ettt ettt et e e bt et et e s et e nbe e st e sbeeneesnee e 35
FINAL ANALYSIS.....tiiiiiiiiieeiieieecie ettt ettt et e e e et e s sbeebeeesseessaeenseenseeesseennns 39
Software Bill of MaterialS.......coceiceveicnsrinssnncsssencsssencsssnncssnsssnssssssss 40

OVEIVICW ...ttt ettt ettt ettt et e bt e et e e bt et e ea e sh e et e esteebeenbeentess e e bt emteenee bt ensesneenseensesnean 40
Creating the SBOMcoiiiiiiiecieceeee ettt ettt st e saaeebeessbeesaesaseesseessseensaens 41
SBOM BENETILS....cutiiiieeiiieiieeieeiie ettt ettt e e teesteesteeseeeaeesseeesseessaeesseesssesnseessseasseenssennseens 44
Identifying and Avoiding Vulnerabilities...........cccoeciieeiiiiiieiiierie e 44
Open Communication and Collaboration..............ccceevieeiiierieiiiienieeieeree e eve e 45
Licensing COMPIIANCE......cc.uieiieriieeiieitieeieertteete et e ete et e saeeteeseeeebeessaeessaeesaeenseesssesnseensneenns 46
INAUSEEY USQGE.uuuiiiiuriirnrinssnrcsssnrcssniossssicsssssssssssssssssssssssssssssssssssssasssssnssssssssssssssssssssssssssssnsssssnssss 47
TIELO. ¢ttt ettt ettt ettt et ae 47
GV ES ettt et s h bttt e a e bttt h bttt e a e bt et at e a et entenhe e 47
SEIVETS ...ttt ettt e b e e et ettt et a bt et esa e e bt et et e e bt e be e e e 48
H Y POIVISOTS. ...ttt ettt ettt et ettt e et e e bt e eabe e teessbeenseessseensaeesseenseessseenseenssaans 49
Hyperscale Cloud COMPULING........cc.eeriiiiiierieeiieeieesiteeieeieesieeereesiaeebeesseeesseesseeeseesseessseenens 50
FULUIE PIANS....uuuiiiiniiiiiniiiisniinsniesssnissssnicssssisssssnsssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssnsssssnssss 51
INEEOAUCTION. ...ttt ettt ettt e e be et e e b e e ssaeesbeesaeenbeesseeensaenseesnseennns 51
CVE RESCAICH. ...ttt sttt ettt sttt et e bt et s 51
SBOM RESEATCH.eeuiiiiiiiieiieieteee ettt ettt sb et st e bt et eaeeees 51
AT LOZ ANALYSIS....uiiieiieiieiieeite ettt ettt ete et et e esteeeibe e teesabeeseessseesseeensaeseeenseenssesnsaenseennns 52
COMIPELILIONS. ...eveeetieeerieite et esiteeteetteebe e tte e bt esseeesbeessteesseensseenseessseasseensseensaessseenseensseenseensseans 52
PUDIICATION. ...ttt ettt et et e et e et e e baeenbeeseeenbeenseeenseenseeenseensneenseas 52

References 53

Introduction

Abstract

Virtualization technology allows multiple virtual machines (VMs) to run on a single
physical server, sharing resources such as processor, memory, and I/O devices while maintaining
logical isolation between them. In this paper, we explore the process of hardening a kernel-based
virtual machine (KVM) stack, focusing on the installation and configuration of Ubuntu Linux
24.04 within a VM under the KVM hypervisor. The VM is managed by QEMU 8.2.2, an
open-source machine emulator and virtualizer, and Libvirt 10.0.0, an open-source tool that
facilitates virtualization management. We examine how these tools can be used to create a
custom security profile, which is attached to processes to limit their actions based on specific
conditions.

Our project investigates vulnerabilities that could potentially allow for unauthorized
access between VMs running on the same hardware, highlighting the security implications of
KVM compared to other Linux-based hypervisors. The security profiles developed through this
research have broader applications, including the possibility of enhancing enterprise-class Z
System servers with zero-trust architectures, paving the way for more secure, isolated, and
efficient virtualized environments.

Summary

This project focuses primarily on developing a virtual environment and testing security
profiles for a Linux-based virtual environment running on x86 hardware, using a Kernel-based
virtual machine (KVM) as the core hypervisor technology. Our goal for the project was to set up
a KVM stack and test the hypervisor’s features, eventually coming to a point where we could
modify system settings, enabling and disabling hypervisor features to enhance security. This
project, which was done with client Fernando Pizzano's help inside the Marist College ECRL
Lab, emphasizes strengthening VM isolation to resist known Common Vulnerabilities and
Exposures (CVEs) for real-world application.

Tools such as QEMU, Libvirt, and Ubuntu running as the host OS were utilized in this
project to ensure the environment setup went smoothly. This project explores VM management,
real security threats, and the risk of lateral attacks within a zero-trust setup. Additionally, a
Software Bill of Materials (SBOM) was developed to address risk management efforts
surrounding the software components of our setup.

Thorough research on CVEs was conducted, to find relevant and applicable flaws in our
setup. The CVVs were tested and documented based on how real threat actors would approach a
partitioned environment like what we have set up.

Ultimately, this Security Profiles and Secure Enclaves for Linux with KVM capstone
project aims to produce a publishable technical report and presentation, contributing valuable
information to the field of virtualized security. The results presented have implications for
secure, zero-trust architectures and can inform best practices in similar environments where
exact isolation and security are paramount. This research and application aims to support

industry and education in building more resilient systems capable of withstanding evolving
security threats.

Contributions
Introduction

All group members contributed to the project setup, deployment, research, and
application. Each group member also worked on substantial parts of the project paper and
presentation, completing individual sections and proof-reading each other's work. We have listed
each group member’s individual contributions to the Security Profiles and Secure Enclaves for
Linux with KVM project, project plan, and presentation.

Nathaniel Desany

For this project, I wrote the introduction, including the project abstract and summary. I
created the project plan timeline and assisted in the creation of the weekly traffic light reports.
For the environment setup, I downloaded the initial Ubuntu OS and set it up on the physical
server we utilized for the project and set up permissions as well as allocated disk space to the
separate VMs partitioned by the hypervisor. I conducted extensive research on CVEs, how they
work, and how to exploit them. I researched VM penetration methods for CVE-2016-2184,
deployed the malicious code, and created its final analysis. I wrote the introduction of the
Industry Usage section, along with the CVE and Hyperscale Cloud Computing documentation. I
researched and documented future competitions and opportunities for our work to be published
in academic and technical journals.

Nicholas Phillips

For this project, I wrote and documented the setup of our Hypervisor and Virtualization
environment, along with explaining the hypervisor we chose and why we chose it. I researched
CVEs that affected QEMU 8.2.2, found CVE-2024-8354, and tested the vulnerability on our
system. This included passing through a USB to the Virtual Machine from the server, creating
code to test the vulnerability, and having Al examine the system logs after attempted exploits. I
wrote the Overview and the Classification of the CVE section, as well as the section regarding
CVE-2024-8354. I also wrote the Hypervisor section regarding real world applications in the
Industry Usage section.

Zachary VanDerVelden

For this project, I wrote the Project Plan portion along with creating all Weekly Traftic
Light Reports, ensuring we stayed on track for our completion date of December 4th, 2024. 1
then transferred all reports into our final documentation. In addition, I wrote a detailed summary
of our initial operating system and the processes performed to get it up and running. I also
performed some research on CVEs related to Libvirt while also aiding in the exploitation of
CVE-2016-2184 and CVE-2024-8354. Shortly after, I created the Software Bill of Materials and
analyzed the results returned by Dependency-Track, forming plans and new ideas for the future
of this project. With the knowledge gained from the SBOM, I wrote the entirety of the Software
Bill of Materials section in our documentation and gave readers everything necessary to create
their own SBOM while also informing them on the importance of the environment analysis tool
itself. Once this was completed, I wrote the introduction for our Future Plans section, along with
our plans to exploit more CVEs in the future, utilize the SBOM, and train artificial intelligence to
read over and analyze logs outputted by our system. Lastly, I consolidated all sources and created
a references page that includes all references written in IEEE format.

Project Plan

At the start of our project, we were tasked with creating a project plan that would guide
us to the completion of our project by the end of the semester. Given the strict deadline of
December 4th, our team was well aware of how important it was to develop a thorough plan that
would allow us to work more efficiently. With the help of Professor Casimer DeCusatis and
Fernando Pizzano of IBM, we discussed our project brief and jotted all of the requested
deliverables down. At this point, our team decided it would be best to utilize ChatGPT to
complete the plan for us. ChatGPT offers a large number of advantages when it comes to project
management that can only benefit us and our project. If given the opportunity, it can create
project plans, track progress, and document any research and progress. In our case, we made sure
to limit its responsibilities to strictly creating a project plan.

In the image below is an edited version of the project plan generated by ChatGPT. After
asking the Al tool to generate the plan for us, it returned a plan with Milestones, Tasks, and
Notes. From there, we went through the output and made any changes that needed to be made
and personalized it to make it a perfect plan. We divided roles between 3 team members and
color-coordinated them to ensure the plan was legible and easy to understand.

Linux KVM Security Project Plan developed with the help of ChatGPT

Key [
Nate |
Zach I
Nick
Date | Milestone Tasks Responsible Notes
w6202 ek 1 Profect Setp and oy ne project and cical esources with Professor DeCusatis Al Goal: Establish foundational knowledge and environment setup.
w6202 WOk 15 Project Setp and yyeq it group members to lay out a general plan and discuss the project Al Goal: Establish foundational knowledge and environment setup.
8262024 eoK 11 Project Setp and ooy previous year's documentation and resources for context Al Goal: Establish foundational knowledge and environment setup.
Week 2: Sponsor Mest with sponsors of other groups to explore potenial collaboration.
9/2/2024 Collaboration and Research a group: Plore pot Al Goal: Explore potential collaboration and research methodologies.
Expansion
Week 2: Sponsor
9/212024 Collaboration and Research |Research methods from Quantum Computing and Leo Project presentations. Al Goal: Explore potential collaboration and research methodologies.
Expansion
Week 2: Sponsor
9122024 Collaboration and Research |Schedule lab time in the ECRL Lab with Professor Algozzine and his student workers. Zach Goal: Explore potential collaboration and research methodologies.
Expansion
Week 2: Sponsor
01272024 llaboration and Research dive research into virualization, hypervisors, and secure vault technologies. Nate Goal: Explore potential collaboration and research methodologies.
Expansion
gio;2024 WVeek 3: Hypenvisor Research |y oy iy gient, Femando Pizzano, to gain a better understanding of project requirements. Al Goal: Meet with the client and improve the project plan
and Project Plan Finalization
Week 3: Hypervisor Research - - » ; ; . .
o0e e e R eomn" |Research Type 1 and Type 2 hypervsor mplementations and securty hardening methods Nate |Goal:Meetwith the lient and mprove the project plan
Week 3: Hypenvisor Research ’ ; ;
o024 U1ekS: Hipervsor Researe lmprove project timeline and goals basod on clent feedback and team discussions. Nate Goal: Mest with the client and improve the project plan
Week 4: Lab Setup and Initial
028 o o |S6tup the srvern the ECRL Iab with ab tachnicians and student workers Al Goal: Set up project environment and inital configurations.
Week 4: Lab Setup and Initial ’
B2 e et |Begin instaling and configuring the hypervisor (KVM) and VM Al Goal: Set up project environment and inital configurations.
Week 4: Lab Setup and Initial) .
B0 aration - |Be0infesearching QEMU and s potentilimplemenation srategies. Nate Goal: Set up project environment and intial configurations.
Week 4: Lab Setup and Initial
SE2026 e L o ! |Ensure thelab envionment s ey forfuther tesiing. Al Goal: Set up project environment and inital configurations.
Week 5: Guest OS Instaliation
ozaz0ze JIeSGE Oves 00 Install various guest operating systems on the hypervisor. Al Goal: Complete guest OS installations and verify VM functionaliy.
Week 5: Guest OS Instalation
y 0S installations and
ozazoze el e OO Manage VM configurations and document settings: Nate Goal: Complete g verity
Week 5: Guest OS Installation
ozaz0ze eSS e OO Test basic communication between VMs and verify the hypervisors are functioning properly. Al Goal: Complete guest OS installations and verify VM functionaliy.
Week 5: Guest OS Installation ; ’
ozaz0ze QeSS lOves OO Document inital VM setup configurations. Nick Goal: Complete guest OS installations and verify VM functionaiiy.
Week 6: VM Isolation and
o/a0i2024 preek € Vi eolation ar Explore VM isolation techniques and begin testing. Al Goal: Research and implement VM isolation techniques.
Week 6: VM Isolation and
o/a0i2024 yreek & Vil leoiation ar Research trusted domains (Intel TDX) and secure vaut technologies (ntel SGX). Al Goal: Research and implement VM isolaton techniques.
Week 6: VM Isolation and
o300 Yreek 8: VM lsolaton a Develop il threat models based on potential VM vulnerabilies. Zach Goal: Research and implement VM isolaton techniques.
Week 6: VM Isolation and
30028 H1EoK S VM soaton o Evaluate VM isolation configurations for lateral movement prevention. Zach Goal: Research and implement VM isolation techniques.
Week 7: Hypervisor Security
02028 e Apply security hardening techniques to the hypervisor Nate Goal: Strengthen hypervisor security and conduct intal tess.
Week 7: Hypervisor Securty 3
07028 e e Test and verlfy hypervisor integriy. Nate Goal: Strengthen hypervisor security and conduct inftal tests.

After the project plan was formed, the next step was transferring our milestones into a
timeline. Having a timeline available has proved to be extremely useful, as it enables us to view
our project plan in a more visually pleasing form. It has allowed us to motivate ourselves to stay
ahead of our project and also holds us accountable when we do fall behind. In addition to the
timeline, we also created user stories and user requirements that allowed us to fully grasp what
our tasks were and how we should go about completing them. Both user stories and requirements
have defined the end goals of our project and encouraged all team members to work toward the
completion of those goals

LINUX KVM SECURITY
TIMELINE

Timeline created based on the Linux KVM Project Plan

10

Weekly Traffic Light Reports
Introduction

The last step in maintaining a perfect project plan was to hold ourselves accountable
every week. By submitting Traffic Light Reports, we acknowledged all of our work completed
along with the work in progress. Each report gives us and any viewers a very clear explanation of
the events occurring in our project. Due to color coordination, each task, whether in progress or
completed, can be easily identified and any further action can be performed based on the status
of each item. Viewers can analyze each column to break down the report, starting with the RGY
column. This column allows you to label each action under three different categories listed
below.

Red— Indicates a problem regarding a specific item

Green— Indicates that no problems are present and item is complete
Yellow— Item is in progress with no major issues

Below is each of our reports that helped guide us towards the completion of this project:

September 18, 2024

RGY Item Description Mitigation/Help
Needed

Green ECRL Lab Server Setup Received Lab access and configured server None Required.
settings to begin implementing KVM
environment

Green Ubuntu Installation Ubuntu 24.04.01 installed and configured on None Required.
server using USB drive

Green VMware Installation VMware installed using terminal commands None Required.

Yellow Ubuntu .iso Download Downloading Ubuntu .iso file to use on Waiting for download
VMware Workstation process to be

completed.

September 25, 2024

11

RGY Item Description Mitigation/Help
Needed
Green QEMU Installation Used terminal to install and compile QEMU None Required.
Green Libvirt Installation & Used terminal to install Libvirt and configure to | None Required.
Configuration run on startup

Green VirtManager Installation Installed VirtManager for hypervisor and fora | None Required.
graphical interface of Libvirt

Green VM Installation & Testing Installed Ubuntu 24.04.01 and Windows 10 as | None Required.
separate VMs. Also ran both VMs
simultaneously to ensure both are functioning
properly on the Hypervisor.

Yellow Weekly Check-ins Setting up weekly meetings with Fernando None Required.
Pizzano

Yellow QEMU Research Consistently researching QEMU and some None Required.
implementation strategies

October 2, 2024
RGY Item Description Mitigation/Help
Needed

Green Weekly Check-Ins Weekly Check-Ins planned with Fernando None Required.
Pizzano- Every Thursday 6:30 pm

Green Remote Desktop Connection | Set up Remote Desktop Connection to enable us | None Required.
to work outside of the ECRL

Yellow XML Security Profile Reviewed and began implementing security None Required.
profiles

Yellow QEMU Research Consistently researching QEMU and some None Required.
implementation strategies

Yellow Documentation Continuously updating and editing project None Required.

documentation

12

October 9, 2024
RGY Item Description Mitigation/Help
Needed
Green Weekly Check-In Had meeting with Fernando Pizzano on None Required.
Thursday October 3rd, and discussed project
progress
Green Researched QEMU and Researched QEMU and Libvirt vulnerabilities None Required.
Libvirt along with other application information
Green Set Goals and Created New | Created future plans regarding AIl, CVEs, and None Required.
Ideas presentations with the help of Fernando
Yellow Documentation Continuously updating and editing project None Required.
documentation
Yellow Tech Meetup Discussed possibility of attending MHV Tech None Required.
Meetup at Bard College on November 8th
October 16, 2024
RGY Item Description Mitigation/Help
Needed
Green Weekly Check-In Planned meeting with Fernando for October 17, | None Required.
at 6:30 pm in Hancock
Green Questions for Fernando Created a list of questions to go over with None Required.
Fernando during weekly check-in
Green Researched QEMU, Libvirt, | Continued to research QEMU 8.2.2, Libvirt None Required.
and Ubuntu 10.0.0, and Ubuntu 24.04 vulnerabilities along
with other application information
Yellow MHYV Tech Meetup Began brainstorming and formulating ideas for | None Required.
the 200 word abstract required to take part in
the MHV Tech Meetup
Yellow Documentation Continuously updating and editing project None Required.
documentation
Yellow MHV Tech Meetup Confirmed our plans of attending the MHV Will continue to plan

Tech Meetup on November 8th

transportation and the
200 word abstract.

13

October 23, 2024
RGY Item Description Mitigation/Help
Needed

Green Weekly Check-In Met with Fernando Pizzano on Thursday None Required.
October 17th to discuss progress and steps
moving forward

Green MHYV Tech Meetup Abstract | Submitted the MHV Tech Meetup Abstract with | None Required.
the help of Professor Casimer DeCusatis

Yellow Researched QEMU, Libvirt, | Continued to research QEMU 8.2.2, Libvirt None Required.

and Ubuntu 10.0.0, and Ubuntu 24.04 vulnerabilities along

with other application information

Yellow MHYV Tech Meetup Continued brainstorming and formulating ideas | Purchase a poster board
for the 200 word abstract required to take part in | and begin putting
the MHV Tech Meetup information on it.

Yellow Documentation Continuously updating and editing project None Required.

documentation

14

October 30, 2024
RGY Item Description Mitigation/Help
Needed
Green Planned Weekly Check-In Planned weekly check-in with Fernando for None Required.
Thursday November 7th, at 6:30 pm in Hancock
Green Updated Project Plan Solidified our plans to be complete with any None Required.
research, exploiting, and other tasks within the
next couple weeks to allow full attention on
documentation
Green MHYV Tech Meetup Purchased poster board and have begun to None Required.
create material
Yellow Researched QEMU, Libvirt, | Continued to research QEMU 8.2.2, Libvirt None Required.
and Ubuntu 10.0.0, and Ubuntu 24.04 vulnerabilities along
with other application information
Yellow MHV Tech Meetup Continued brainstorming and formulating ideas | None Required.
for the 200 word abstract required to take part in
the MHV Tech Meetup
Yellow Documentation Continuously updating and editing project None Required.

documentation

CVE-2024-8354

Began exploiting CVE-2024-8354: Exploit
should send malformed USB requests that lead
to an assertion failure in QEMU which will then
crash the process causing a DOS on the host.

Attempted on Linux
Server and Windows
VM. To be exploited,
Python 2 needs to be
installed in the terminal
but, it is outdated and
no longer supported

15

November 6, 2024
RGY Item Description Mitigation/Help
Needed
Green Confirmed Weekly Check-In | Confirmed weekly check-in with Fernando for | None Required.
Thursday November 7th, at 6:30 pm in Hancock
Green Updated Project Plan Solidified our plans to be complete with any None Required.
research, exploiting, and other tasks within the
next couple weeks to allow full attention on
documentation
Green MHYV Tech Meetup Completed poster board and prepared for the None Required.
MHYV Tech Meetup
Green CVE-2024-8354 Completed exploitation attempts for None Required.
CVE-2024-8354
Yellow Researched QEMU, Libvirt, | Continued to research QEMU 8.2.2, Libvirt None Required.
and Ubuntu 10.0.0, and Ubuntu 24.04 vulnerabilities along
with other application information
Yellow Software Bill of Materials Started working towards the creation of the None Required.
SBOM
Yellow Documentation Continuously updating and editing project None Required.

documentation

16

November 13, 2024

RGY Item Description Mitigation/Help
Needed

Green Planned Weekly Check-In Planned weekly check-in with Fernando for None Required.
Thursday November 21st

Green Pre-Break Checkpoint Completed Pre-Break Checkpoint, allowing us | None Required.
to map out the rest of the semester

Green MHYV Tech Meetup Participated in the Mid Hudson Valley None Required.
TechMeet at Bard College on Friday November,
8th

Green Researched QEMU, Libvirt, | Completed research of QEMU 8.2.2, Libvirt None Required.
and Ubuntu 10.0.0, and Ubuntu 24.04 vulnerabilities along
with other application information

Green Software Bill of Materials Finished the creation of the Software Bill of None Required.
Materials

Yellow Documentation Continuously updating and editing project None Required.
documentation

Yellow Final Report Began creating and filling in outline for final None Required.
report

November 20, 2024
RGY Item Description Mitigation/Help
Needed

Green Confirmed Weekly Check-In | Confirmed weekly meeting with Fernando for None Required.
Thursday November, 21

Green Final Report Created and filled in outline for final report None Required.

Yellow Documentation Continuously updating and editing project None Required.
documentation

Yellow Final Presentation Began forming script and finalizing presentation | None Required.

17

November 27, 2024
RGY Item Description Mitigation/Help
Needed
Green Documentation Completed final documentation None Required.
Yellow Final Presentation Began forming script and finalizing presentation | None Required.
Yellow Confirm Check-In Planning meeting with Fernando for next Send follow up email to
Tuesday, December 3rd Fernando.
December 4, 2024
RGY Item Description Mitigation/Help
Needed
Green Confirmed Check-In Planned meeting with Fernando for next None Required.
Monday, December 2nd
Green Documentation Completed final documentation None Required.
Green Final Presentation Presented our Project on December 4th, at 8:15 | None Required.
am
Green Final Video Presentation Recorded final video presentation None Required.
December 11, 2024
RGY Item Description Mitigation/Help
Needed
Green Final Reflection Completed project Final Reflection None Required.
Green Peer Review Completed project Peer Review None Required.

18

Infrastructure Design Diagrams

Vi Wi
Linux I Windows
application application
Linux O% Windows O%
QEMU QEMU Linux
application
.
KVM Linux host OS
Hardware system
~= [
Diagram 1

Diagram 1 shows specifically how the KVM hypervisor manages virtual machines on a
Linux-based host system. This diagram illustrates each VM running a different operating system.
In our case, it is Ubuntu Linux 24.04 and Windows 10. Because of the virtualization setup in the
environment, the operating systems running on each VM have full access to the hardware of the
server they are set up on. The QEMU 8.2.2 hardware virtualization emulator is crucial to our
setup. QEMU emulates the hardware layer it is running on for the operating systems to use. In
our environment, we also have Libvirt 10.0.0 set up to run on startup to simplify the creation,
configuration, and general monitoring of the VMs. It works with KVM to manage resources and
QEMU to configure and launch the guest VMs.

The Linux host OS in this model uses the KVM module within the Linux kernel to
allocate and manage resources for the VMs. This runs directly on the hardware and interacts with
the processor, memory, and I/O devices. The resources available through the hardware system
are made available and allocated out to the VMs through the Linux kernel and KVM.

Diagram 2 presents a more compact overview of the relationship built between the

.a.a.a.a.ata.l.a.l.a.a..aa.a.a...a.a.a.a.a.a. e e T

KVM

Linux Kernel

-I--I--FI--I-l--I--I--I-++-!-I-*+-I--I-1+-F-II--I-I--I-|-++-I-!-F+I-I'++

HARDWARE

KVM

Diagram 2

19

hardware, the Linux kernel, and VMs. The guest VMs run on top of the QEMU emulator, which
are their own isolated systems with their own OSs, applications, and resources allocated through
the hypervisor. Resources from the hardware layer are controlled by the kernel and are spread to

the guests.

20

Deployment

Installation of Initial Operating System

At the start of the semester, we were immediately faced with our first task of the project
which was installing our operating system. Although it seemed to be a quick and easy task, its
importance was extremely significant. The operating system installed on the x86 IBM server,
assigned by Professor Chris Algozzine, would go on to serve as the backbone and foundation of
our project. Using deployment documentation created by the previous Linux KVM Security
capstone team, we were easily able to setup the server making only a few adjustments. The first
step in the installation process was to download Ubuntu 24.04 on a flash drive from the Ubuntu
website. From there, we inserted the drive into the server and booted it up entering the BIOS.
Next, we selected our drive which rebooted our server and began the installation of Ubuntu
where we continued the deployment of our operating system. Throughout the installation, we
were requested to select our language and keyboard layout along with network and storage
configurations. The last step was to then create a user account and complete installation. Once
installation was finally completed, we were then able to fully focus on future steps such as
virtualization and hypervisor setup.

K

21

ting Research Lab (ECRL)

Images of our x86 IBM server in the Marist College Enterprise Compu

21

Virtualization and Hypervisor Setup

The next step of our project was to get our hypervisor set up so we could then install and
set up our Virtual Machines. Rather than a software application like VMWare for our hypervisor,
we went with a specific software stack of QEMU and Libvirt as our hypervisor. We installed
QEMU and Libvirt through the Linux Bash terminal, the specific versions automatically installed
to be compatible with our version of Ubuntu 24.04. QEMU was installed as version 8.2.2 and
Libvirt was installed as version 10.0.

In our software stack, QEMU is the primary emulator. QEMU allows full hardware
virtualization and lets us run the guest operating systems that we wish. QEMU has its own CPU
emulation and in turn lets us run guest operating systems which may have different architecture
from that of our host. Libvirt handles more of the managing side of our virtualization process.
Libvirt acts as a library that provides a high level API for managing virtualization technologies,
like QEMU. The two work together to provide us with a smooth virtualization experience to
conduct our project.

The process of installing QEMU and Libvirt onto our Ubuntu Server was relatively
straightforward. We began with the installation of Libvirt by running the command ‘sudo apt
install libvirt-clients libvirt-daemon-system’ in the Linux bash terminal.

nes Libtpms®
onfig-nwfilter
irt-1l16n

ct libvirt-daemon-driver-storage-rbd
oM - XC
n numad passt auditd

ars

Libwir dae
12 lvm2 mdev

© to remove and 15 not upgraded.

additional disk space will be used.

bunt
.ubuntu.
ive.ubuntu.
ubuntu. 3
s -updates/
-updates/ma
.ubuntu.comfubuntu noble-update:

After Libvirt successfully installed, we moved onto the process of installing QEMU. To
install QEMU we ran the command ‘sudo apt install gemu-system-x86’ in the Linux bash
terminal.

22

s libaiolt64
ard® libdaxctll libfdt1
librbd1

tra

gstreamerl.@-1libav gstreamerl.8-plugins-ugly samba vde2
owing NE" pa
3 e-qemu - 256k
8 11 thr
] 1Lbndrtlu llbpmgml 1ib

t upgraded.

ce will be used.

.ubuntu f t) /main amd64
bun i
-ubuntu

.ubuntu.c 6
e.ubuntu. cc t amdad
-ubuntu bun ain amd6d
.ubuntu.co buntu in amdé4
.ubuntu t) i amdb4

Now that we had successfully 1nstalled both QEMU and L1bV1rt we ran the command
‘sudo systemctl enable libvirtd’ in order to ensure that Libvirt is always running when the system
is booted up. We then installed our final application which is ‘Virt-Manager’, simply a user
interface for Libvirt so we could work with our Virtual Machines aside from the command line.
That was done by running the command ‘sudo apt-get install virt-manager’ in the Linux bash
terminal.

Our full software stack was now installed on our Ubuntu Server and the process of
creating our Virtual Machines could begin. We started with the creation of the Ubuntu 24.04
VM. We installed the ISO file for Ubuntu and created the VM.

ubuntu24.04 on QEMUKVM

File Virtual Machine WView Send Key

=@ » neoe - - =

Help and support

The official Ubuntu documentation is available both
online and via the Help icon in the dock.

Ask Ubuntu covers a range of questions and
responses and the Ubuntu Discourse provides guides
and discussions for new and experienced users.

For enterprise users Canonical provides commercial
support to make it easy to onboard and manage
Ubuntu securely in the workplace.

¢ n Installing the system..

Ubuntu 24,041 175

@) Ubuntu

« Official documentabion
« Ask Ubuntuy
+ Ubuntu Discourse

= Enterprise-grade 24/7 support with Ubunty Pro

23

24

We then went on to create the Windows 10 VM. We installed the ISO file for Windows

10 and set up the VM as shown in the screenshot below.
win10 on QEMUSKVM O x

Ha Windows Setup

28 Windows'

Language to install: fEnglich (United Statec) -

Time and curvency format: i

Enter your langusge snd other preferénces and chek "Net” to continue.

i Mieranesh Covpanstion. &1 figim reaned

25

After both VMs had been created and were up and running, we were able to see the status
in the Virtual Machine Manager menu.

r

Virtual Machine Manager - o x

File Edit View Help

L o PN O -

Mame CPU usage
~ QEMUMKNVM

E ubuntu24.04
Running

iiji win10

Running R

To verify further that both VMs were running properly we issued the command ‘sudo
virsh -c gemu:///system list’ to display the status of our current VMs in the bash terminal.

sudo virsh -«

= gemu: f/fsystem list
[sudo] password for
Id

runni ng
ubuntu24.84 running

Now we had our Server setup with Ubuntu 24.04 installed as the OS, QEMU and Libvirt
installed, and both of our VMs installed and running. The setup of our virtualization environment
was complete and we could move on to the next steps.

26

Common Vulnerabilities and Exposures

Overview

The term CVE (Common Vulnerabilities and Exposures), is a term used for security
vulnerabilities that are found in either the hardware or software of a system. They can be caused
by things like coding errors, outdated software, misconfigurations, and much more. To maintain
an organized list of CVEs, they are each assigned an ID and have a description to go along with
them. CVEs are assigned an ID which consists of the year it was discovered and a random ID
number following it. For example, one of the CVEs we researched was assigned the ID of
CVE-2024-8354, where 2024’ was the year it was discovered and ‘8354’ is the random ID
number. The MITRE organization is in charge of maintaining the list of CVEs, they are a
non-profit organization and receive government funding for research and development centers.

The work that MITRE does with maintaining and updating the list of CVEs is crucial to
the field of Cybersecurity. Cyber Criminals and attackers use vulnerabilities for malicious
purposes such as stealing or deleting sensitive data, installing malware, executing code, and
many more. When it comes to exposures, they are slightly different. While vulnerabilities are a
flaw in software code that allows attackers to gain access to a system and act as a legitimate user.
Exposures are a mistake in software code or configuration which allows an attacker to gain
access to a system or network. Exposures typically lead to things like data breaches, data leaks,
and the sale of personally identifiable information (What is a CVE?, n.d.).

The list of CVEs by MITRE serves multiple purposes in the field of cybersecurity. For
one thing, it allows for a standardized way to keep track of and reference vulnerabilities and
exposures. This organization provided by the standard of the CVE list allows for smooth
communication between groups when discussing different vulnerabilities. Another reason why
the list of CVEs is so important is the fact that it's all centralized in one location. Rather than
there being many different sources and webpages to look through to find a certain vulnerability,
it is all kept in one centralized place. Along with those reasons, it is obvious that a thorough list
of vulnerabilities can help to reduce attack surfaces of organizations.

27

Classification

Every CVE is assigned a score which is determined by the Common Vulnerability
Scoring System, also known as the CVSS. The CVSS uses the numbers 0 to 10 to determine the
severity of a CVE, with 0 meaning no risk and 10 being critical. The full breakdown of the
CVSS scores is shown in the following table:

CVSS Score Severity
0.0 None
0.1-3.9 Low
4.0-6.9 Medium
7.0-8.9 High
9.0-10.0 Critical

There are several different aspects which are examined in order to determine the CVSS
assigned to any given CVE. There are three sets of metrics which determine the CVSS that is
assigned to a CVE, these include: the Basic Metric Group, the Temporal Metric Group, and the
Environmental Metric Group. These different Metric Groups can be broken down even further.
The Basic Metric Group is broken down into two individual sections, one being Exploitability
Metrics and the other being Impact Metrics. The Exploitability Metrics section contains several
different factors including: Attack Vector, Attack Complexity, Privileges Required, User
Interaction, and Scope. The Impact Metrics section also contains several factors which include:
Compatibility Impact, Integrity Impact, Availability Impact, and Scope. Now the other two
Groups only contain one section of factors each. The Temporal Metric Group contains the
following: Exploit Code Maturity, Remediation Level, and Report Confidence. The
Environmental Metric Group contains the following: Confidentiality Requirement, Integrity
Requirement, Availability Requirement, and Modified Base Metrics. The Basic Metric Group
essentially focuses on the overall characteristics of the vulnerability. The Temporal Metric Group
essentially focuses on the current exploitability of a vulnerability and how available controls like
patches are. Finally, the Environmental Metric Group is a section that allows an organization to
adjust the base CVSS Score depending on their Security Requirements. (Goodman, 2024)

28

CVE-2024-8354

The vulnerability CVE-2024-8354 was found while we researched known CVEs which
still affect the QEMU version 8.2.2. It was the only significant vulnerability found that was still
unpatched, so we would be able to try and exploit it on our system.

CVE-2024-8354 is a vulnerability that is present when passing through a USB device to a
VM and sending certain requests when accessing it. It is more specifically present in a certain
function involved in the USB process within QEMU 8.2.2, this would be the ‘usb_ep get()’
function. It can be exploited by writing code that takes advantage of the vulnerability and
executing the code in the Linux Bash terminal on your VM. A successful exploit of this
vulnerability on the VM would result in a denial of service (DoS), and would cause the QEMU
process to crash.

After proper research was done on the vulnerability and we gained more knowledge, we
would then begin the process of how exactly we would test out this vulnerability and exploit it
on our system. First, we would have to have a USB device plugged into our system and pass it
through to our VM. We used a Lenovo Mouse for this step, we plugged it into our Server and
began finding out how we could exactly pass the USB through to our VM. There were several
ways we found in which this could be accomplished, the way that worked the best for us was
adding a section of code into our XML configuration file on our VM.

The following code was what we added into our XML configuration file, under the
devices section:

29

In the following screenshot, the code added to our XML configuration file is displayed:
GNU nano 7.2 Jtmp/virshU1RYW2 . xml *

Now that we added the ability to pass through a USB device from our physical server to
our VM we were able to continue with the next steps of exploiting our system. To exploit this we
needed to create code that would send requests to the USB device on our VM and hopefully
exploit the vulnerability and crash the QEMU process. A template of the code was created, and
from there we had to replace certain values with ones specific to our USB device. The Vendor ID
and Product ID of the USB device was required in the code to properly identify it. To discover
these values the command ‘Isusb’ was used. As displayed in the screenshot below:

:1~% lsusb
Bus 001 Device : 1d6b:0002 Linux Foundation 2.0 root hub
001 Device : 0627:0001 Adomax Technology Co., Ltd QEMU Tablet

001 Device - 17ef:6019 Lenovo M-U0B25-0 Mouse
002 Device - 1d6b:0003 Linux Foundation 3.0 root hub

:SI

The command was executed on the Ubuntu VM, which shows the successful passthrough
of our USB device, the Lenovo Mouse, from the Server to the VM. We can also see the Vendor
ID and the Product ID from each USB device, we then took those values and implemented them
into our code for the exploit.

30

The following code was what we used to attempt and exploit the vulnerability:

‘#include <libusb-1.0/libusb.h>
#include <stdio.h>
#include <stdlib.h>

#define TIMEOUT 1000 // Timeout for control transfer in milliseconds

int main() {
libusb_device handle *handle;
int result;

// Initialize the libusb library

result = libusb_init(NULL);

if (result < 0) {
fprintf(stderr, "Failed to initialize libusb: %s\n", libusb_error name(result));
return EXIT FAILURE;

}

/I Open the USB device with Vendor ID 0x17ef and Product ID 0x6019
handle = libusb_open device with vid pid(NULL, Ox17ef, 0x6019);
if (handle == NULL) {

fprintf(stderr, "Failed to open USB device\n");

libusb_exit(NULL);

return EXIT FAILURE;
}

uint8_t bmRequestType = LIBUSB_ REQUEST TYPE STANDARD |
LIBUSB_ENDPOINT OUT; //
uint8 t bRequest =0x01; // Malformed request type (replace with actual values based on

CVE)
uintl6_t wValue = OxFFFF; // Malformed value (replace with actual values based on CVE)
uintl6 t windex = 0x0000; // Typically the first interface or endpoint

result = libusb_control transfer(handle, bmRequestType, bRequest, wValue, windex, NULL, 0,
TIMEOUT);
if (result < 0) {
fprintf(stderr, "Control transfer failed: %s\n", libusb_error name(result));
} else {
printf("Control transfer succeeded\n");

}

/I Close the USB device and cleanup
libusb_close(handle);
libusb_exit(NULL);

return EXIT SUCCESS;

.

31

In order to fully test the exploit we had to run the code multiple times but with different
combinations of values for the following variables: bRequest, wValue, and windex. In the table

below the values we tested are listed:

Variable Valuel Value2 Value3
bRequest 0x01 OxFF 0x03
wValue OxFFFF 0x0001 0x7FFF
wlindex 0x0000 0x0001 0x00FF

With combinations of these values we were able to try different types of interactions with
the USB device to try and exploit the vulnerability. The next step was to create a ‘C’ file of our
code on our VM, this is displayed in the following screenshot:

Open v [7] » exploittest.c

return EXIT_SUCCE

Now that we have everything set up, we could begin testing our code in an attempt to
exploit the vulnerability.

32

In order to make the code executable we had to first compile it with the command:
‘gce -0 exploittest3 exploittest3.c -lusb-1.0’

To break down this command further:

‘gee’ - This is used to compile C programs

‘-0 exploittest3’ - This specifies the name of the output file
‘exploittest3.c’ - This specifies the source code file to compile
‘-lusb-1.0’ - This indicates that the library libusb-1.0 is to be linked

In the screenshot below the compilation command is run first, then the command ‘sudo
Jexploittest3’ is run to execute the code.

ubuntuvm1@ubuntuvm1-Standard-PC-Q35-ICH9-2009: ~/Desktop 0y = S © &

§ gcc -0 exploittest3 exploittest3.c -1

usb-1.0

$ sudo ./exploittest3
[sudo] password for ubuntuvml:
Control transfer failed: LIBUSB ERROR PIPE

Once the exploit code was ran the following error was received as seen in the screenshot:
‘Control transfer failed: LIBUSB_ ERROR_PIPE’

After attempting to run the code with several different combinations for the values mentioned
before, the same error still appeared. At this point we investigated the system logs in order to see
what was going on and if the vulnerability had successfully been exploited. The ‘dmesg’ log was
the primary log analyzed.

33

The screenshot below displays a section of the ‘dmesg’ log after we attempted to exploit
the vulnerability.

type=1400 audit(1732165207.276:549): apparmor="DENIED" operation="capa
ble" class="cap" profile="/usr/sbin/cupsd" pid=81304 comm="cupsd" capability=12 capname="net_

type=1400 audit(1732165253.359:550): apparmor="DENIED" operation="capa
" class="cap" profile="/usr/lib/snapd/snap-confine" pid=81352 comm="snap-confine" capabilit
capname="net_admin"
type=1400 audit(1732165253.373:551): apparmor="DENIED" operation="open
" class="file" profile="snap-update-ns.firmware-updater" name="/proc/81364/maps" pid=81364 com
m="5" requested_mask="r" denied_mask="r" fsuid=1000 ouid=0
type=1400 audit(1732165253.533:552): apparmor="DENIED" operation="open
class="file" profile="snap.firmware-updater.firmware-notifier" name="/proc/sys/vm/max_map_co
unt" pid=81352 comm="firmware-notifi" requested _mask="r" denied_mask="r" fsuid=1000 ouid=0
type=1400 audit(1732176053.395:553): apparmor="DENIED" operation="open
" class="file" profile="snap-update-ns.firmware-updater" name="/proc/82181/maps" pid=82181 com
m="5" requested mask="r" denied mask="r" fsuid=1000 ouid=0
type=1400 audit(1732176053.586:554): apparmor="DENIED" operation="open
" class="file" profile="snap.firmware-updater.firmware-notifier" name="/proc/sys/vm/max_map_co
unt" pid=82169 comm="firmware-notifi" requested_mask="r" denied_mask="r" fsuid=1000 ouid=0
type=1400 audit(1732186853.350:555): apparmor="DENIED" operation="open
class="file" profile="snap-update-ns.firmware-updater" name="/proc/82493/maps" pid=82493 com
m="5" requested_mask="r" denied_mask="r" fsuid=1000 ouid=0
type=1400 audit(1732186853.480:556): apparmor="DENIED" operation="open
' class="file" profile="snap.firmware-updater.firmware-notifier" name="/proc/sys/vm/max _map_co
unt" pid=82481 comm="firmware-notifi" requested mask="r" denied_mask="r" fsuid=1000 ouid=0
type=1400 audit(1732197653.343:557): apparmor="DENIED" operation="open
class="file" profile="snap-update-ns.firmware-updater" name="/proc/82939/maps" pid=82939 com
m="5" requested mask="r" denied mask="r" fsuid=1000 ouid=0

"

We noticed several interesting things about the log here, such as the AppArmor
‘DENIED’ messages. However we were unable to tell by these logs if the vulnerability was
successfully exploited. The next step was to utilize Al to analyze the system logs and determine
if there was any indication that the vulnerability was exploited.

34

The full ‘dmesg’ log from each test of the exploit was analyzed by ChatGPT.

The provided dmesg logs do not show any clear signs that CVE-2024-8354 was exploited. Here’s an
analysis of the key messages:
1. USB Device Resets:
s The logs indicate multiple resets of the USB device (e.g., usb 7-2: reset low-speed USB
device number 7 using uhci_hcd). USB resets alone don't indicate exploitation; they usually
happen when the device loses communication or encounters errors. Without additional USB

or memory errors, this could be a normal USB communication issue rather than evidence of

a vulnerability being triggered.

2. AppArmor Denials:

s There are several AppArmor logs showing denied operations (net_admin capability and

access to /proc/.../maps files) from processes associated with Snap (like snap-confine
and snap-update-ns.firmware-updater). These entries reflect standard security policies, not

signs of exploitation.
3. Virtual Network Messages:

* The messages about virbré and wnet3 (such as “entered forwarding state” and “topology
change detected”) are typical for virtual network interface configuration and do not indicate

any exploit activity. NP

The screenshot above is the analysis of the logs from ChatGPT. Unfortunately there was
not a successful exploit of the vulnerability, even though several different combinations for the
input values in the code were used. Regardless of the unsuccessful exploit, it is still useful to see
how ChatGPT was able to examine the system logs for us and feed us back this information.
ChatGPT was able to tell us that there were multiple resets of the USB device found in the logs.
Even though that does not directly mean a successful exploitation, we were able to learn that
there was interaction to some extent with the USB device that was passed through to the VM.

Final Analysis

CVE-2024-8354 remains unpatched to this day on QEMU 8.2.2. Regardless of the
unsuccessful exploitation of it on our system, it is still a significant vulnerability for host
machines running QEMU 8.2.2. The vulnerability is specifically present in the function
‘usb_ep_get()’ which is used when interacting with USB devices that are passed through to the
VM. If an attacker was to have access to the VM, they could have the ability to abuse this
vulnerability and cause a Denial of Service on QEMU, effectively stopping the QEMU process
in its tracks.

35

CVE-2016-2184

Inside of our VM environment, we tested CVE-2016-2184, which is a security
vulnerability associated directly with the kernel surrounding IPsec (Internet Protocol Security).
This vulnerability is classified as a denial-of-service (DoS) exploit due to improper handling of
certain conditions in the kernel’s networking components. The xfrm subsystem manages the
IPSec state and policies, and is unfortunately where the issue lies. A flaw lies in the handling of
the packets allowing the kernel to hang or crash, resulting in a DoS condition. Improper
validation of user-supplied data or improper handling of certain edge cases in the
xfrm_aevent net() function results in NULL pointer dereferences when processing malformed
packets.

Exploiting this vulnerability can cause the system to become unresponsive, taking the
system offline. If a user were to send malicious [Psec packets over the network, they could
conduct this vulnerability remotely, but we decided to simulate it locally.

Utilizing a public vUSBT{ zip file provided by schumilo on GitHub, we were able to
simulate the implementation of this CVE. The GitHub repository provided us with a USB-fuzzer,
which tests USB device drivers and stacks for security flaws by sending malformed or
unexpected data to simulate malicious devices. This approach uncovers vulnerabilities in how
operating systems and software handle USB interactions.

After downloading the vUSBf-master.zip file from GitHub, the file was unzipped to the
downloads folder on our Ubuntu 24.04 system.

Q Files = { [Gr Home / Downloads H]

o

2 Q@ ®

Name Size Modified -

U Recent

‘ Cancel | Select Extract Destination Q m
0 Recent | (st capping .

{3t Home

L}
N}

[Docume...

‘ 4 Downloads |

Il Music dependency- syft VMware- vusBf-master vusBf-master (2] 35957.bxt 39555.txt
. track-master Workstation-17.6

[&] Pictures .0-2423... .bundle

H videos .! .!

Open directories read-only

@ vex.json 27MB 14Nov2024 r

& Hypervisor1

Hypervisor2 @ bom.json (“yUsBf-master (1).zip" selected (360.7 kB)

We opened the terminal application and navigated to the downloads folder. Using the ls
command, we showed the filenames and directories inside of the vUSBf-master directory.

changelog
config.py

COPYING.md
descFuzzer.py

capping@capping-00: ~/Downloads/vUSBF-master

:$ cd \Downloads
= S cd \vUSBf-master
s l1s

fileParser.py gemu-2.1.1.patch

fuzzer.py gemu.py

help.txt README . md
report_desc_reader.py

s

usbEmulator.py

usbparser.py
usbscapy.py
vusbf.py

36

37

To start the fuzzing process, we ran the python vusbf.py -1 command because we have
Python 3 installed on our system. This command would run the vusbf.py script and list all
predefined or available payloads that can be sent to the target system. These payloads represent
crafted USB data structures or configurations designed to test specific vulnerabilities. This step
helps choose a payload for further testing.

: $ python3 vusbf.py -1
/home/capping/Downloads/vUSBf -master/vusbf.py:29: SyntaxWarning: invalid escape
sequence '\ '

splash += "\ N/ /L [l "I 10000/ bbb/ I '~ \\n"
/home/capping/Downloads/vUSBf-master/vusbf.py:30: SyntaxWarning: invalid escape
sequence '\ '

splash += " NV /[[[LI P10 10 cr e b1z I N T2 [\n"
/home/capping/Downloads/vUSBf-master/vusbf.py:31: SyntaxWarning: invalid escape
sequence '\ _'

splash += " _/ [_[I_I AN [VPO o VPO [U (O GO I A P ARV
/home/capping/Downloads/vUSBf -master/vusbf.py:34: SyntaxWarning: invalid escape
sequence '\|'

splash += " | [_ | [[[I_ /I_ // _\I "__|\n"
/home/capping/Downloads/vUSBf-master/vusbf.py:36: SyntaxWarning: invalid escape
sequence "_'

splash += " [_| _,_I/___I/___IN__II_ \n"
/home /capping/Downloads/vUSBf -master /vusbf.py:40: SyntaxWarning: invalid escape
sequence '\ _'

splash += "1 | / // __/ /[/ __ "/ [/ "_\/_ I\n"
/home/capping/Downloads/vUSBf-master/vusbf.py:42: SyntaxWarning: invalid escape
sequence '\ _'

splash += "| /A VY A VY A VY S A // / / \n"
/home /capping/Downloads/vUSBf -master/vusbf.py:44: SyntaxWarning: invalid escape
sequence '\/'

splash += " [/ /[[[/_ /_ [[_\/ / \n"
/home/capping/Downloads/vUSBf-master/vusbf.py:46: SyntaxWarning: invalid escape
sequence "_'

splash += "/_/ __.,/ /__/___/__/_/ \n"

File "/home/capping/Downloads/vUSBf-master/vusbf.py", line 107

print "EXECUTE OBJECT MODE (NETWORK)"

AAAAANAAANAAANAAAANAANAAANAAAAAAANANAAANANA

SyntaxError: Missing parentheses in call to 'print'. Did you mean print(...

s 1

Since the script is in Python 2 and we are working with Python 3, the terminal window
throws a list of syntax errors. Unfortunately, as of January 1, 2020, support for Python 2
officially ended and was fully replaced with Python 3, which was introduced in 2008. This
means we cannot conventionally download Python 2 on our system, but it can be formed to use it
for legacy purposes, such as an older system or software still running it.

We still simulated the execution of the fuzzer, and have listed the next steps and
commands that would be used in carrying out a USB DoS attack.

38

. python vusbf.py -eon 127.0.0.1 1235 panic_1.0bj

a. -eon specifies that a payload is being sent to an external QEMU instance over the
network.

b. The payload chosen in this example to be sent is panic_1.0bj. There are many
payloads available inside of the initial vUSBf-master folder.

. python vusbf.py -eo panic_1.0bj -o ubuntu1404.config -v1

a. -eo specifies the payload file being executed (panic_1.0bj)

b. -0 ubuntul404.config provides a config file for the test environment. In this
example, it is a VM running Ubuntu 14.04, but use whatever OS you have
running on your target VM.

c. -vl specifies verbosity level, which in this case, is basic output. This should
display information about the payload being sent and the system’s response.

This command executes the specified payload in the configured virtual environment,
simulating the USB device within the system.

. python vusbf.py -sp 127.0.0.1 1235 -e ex2

a. -sp 127.0.0.1 1235 Sends the payload to an external VM located at
127.0.0.1:1235.
b. -e ex2 Executes the payload.
This command runs single-core mode, restricting the USB fuzzing operation to a single
CPU core, simplifying analysis and ensuring consistency.

. python vusbf.py -r -e ex1 -0 ubuntul404.config -rl

a. -r enables the single-core mode for testing.

b. -rl specifies that the fuzzing script should be run in a repeat loop.
This command runs the fuzzing operation in a single-core mode entirely within the local
virtual environment.

. python vusbf.py -rm -p 20 -e ex1 -0 ubuntu1404.config -rl

a. -rm enables multi-core mode for testing.

b. In this example, -p 20 runs the test across 20 parallel processes.
This mode leverages multi-core processing to speed up the fuzzing process by testing
multiple payloads simultaneously if you decide to investigate more than one.

39

Final Analysis

CVE-2016-2184 is a critical vulnerability in the Linux Kernel’s handling of IPsec, the
xfrm subsystem specifically. [Psec is a widely adopted protocol for securing internet traffic, so
the possibility of this exploit being used remotely through malformed IPsec packets is
concerning. This vulnerability leads to system downtime, loss of service, and even full system
crashes if left unpatched, which could create a possible vector for further exploitation.

Testing this CVE in controlled environments such as VMs or legacy systems running
outdated software is essential for understanding the full scope of the attack without
compromising essential systems. Given that Python 2 is no longer supported but is still relevant
in legacy configurations, this testing becomes critical for ensuring that older systems that still run
vulnerable versions of the kernel we are working with, are protected. Simulating attacks using
fuzzing tools like vUSBf allows researchers and security specialists to identify and mitigate
CVEs before they become harmful to an environment.

40

Software Bill of Materials
Overview

In today's rapidly changing digital world, we have constantly seen vulnerability after
vulnerability emerge from what seems to be thin air. When studying and learning about
Cybersecurity, there is always an emphasis on keeping up with new threats along with old ones.
When implementing a Software Bill of Materials (SBOM), you are giving yourself an
opportunity to learn more about the ins and outs of your software components, dependencies, and
metadata. Keeping track of all of the previously listed elements, SBOMs enable teams to manage
vulnerabilities, stay within compliance of any standards that may be required, and maintain
transparency with stakeholders and other teams throughout an organization. Without an SBOM,
it is almost impossible to keep track of all known vulnerabilities that may be prevalent in your
environment.

In May of 2021, the United States Government released an Executive Order requesting
the improvement of Cybersecurity in the U.S. The order reiterated the importance of creating a
Software Bill of Materials and stated that “understanding the supply chain of software...and
using it to analyze known vulnerabilities are crucial in managing risk”. In the order, President
Biden compared SBOMs to the ingredient label on food packaging. When thinking about the
analogy, it seems to make perfect sense. Once you let your tool of choice analyze your
environment, it tells you the amount of vulnerabilities you have in your portfolio, vulnerable
components, inherited risk score, and a list of CVE’s that are able to be exploited, along with
other important information. Everything you need to know is handed to you in an
easy-to-understand format. With this in mind, we thought implementing an SBOM in our project
would only be beneficial. It has provided us with an opportunity to look into more CVEs in the
future and go further with our exploitations beyond the completion of the semester.

3322 1 199 13172

Portfolio Vulnerabilities Projects at Risk Vulnerable Components Inherited Risk Score

/

Portfolio Vulnerabilities

146 (4.4%) 1090 (32.8%) 1984 (59.7%) 50 (1.5%) 52 (1.6%)

41

Creating the SBOM

1) Navigate to the Dependency Track GitHub and download dependency-track-master
a) https://github.com/DependencyTrack/dependency-track

= O DependencyTrack / dependency-track

Code Issues 727 Pull requests 31) Discussions Actions [Projects Security |22 Insights

dependency-track Publi QO sponsor ©Watch 69 - % Fork 578 v7 star 27k

¥ master ~ 3 Branches © 68 Tags Q Goto Addfile -~ [X>'Code ='| About

Codespaces Dependency-Track is an intelligent

P " .
% nscuro Mer Component Analysis platform that allows

(3 Clone 8 organizations to identify and reduce risk
B github Bump github/co in the software supply chain.
HTTPS SSH GitHub CLI
BB idea Restrict max heap| ——— & dependencytrack.org/
https://github.com/DependencyTrack/dependency-1 !
B dev er-compo security o sulnerabilities
Clone using the v § — x
appsec component-analysi
B docs

vulnerabil

o sic fixes #4373) Open with GitHub Desktop

tion

osition-analysis
[.checkstyle-header [¥) Download zZIP

bill-of-materials s purl

(] eckstyle.xml

-ur

DI .dockerignore

2) Once downloaded, go into the terminal and go to the directory in which the
dependency-track-master is downloaded it and run the command sudo docker-compose up -d.
a) This command will build and start both the API server and frontend
3) To verify everything is up and running, run the docker ps -a command.
4) Go to the Downloads/syft directory and run sudo apt update
5) Once completed, enter sudo apt install -y golang

: $ sudo apt update
[sudo] password for capping:
Hit:1 https://dl.google.com/1linux/chrome/deb stable InRelease
Hit:2 http://archive.ubuntu.com/ubuntu noble InRelease
Hit:3 http://security.ubuntu.com/ubuntu noble-security InRelease
Hit:4 http://archive.ubuntu.com/ubuntu noble-updates InRelease
Hit:5 http://archive.ubuntu.com/ubuntu noble-backports InRelease
Hit:6 https://ppa.launchpadcontent.net/deadsnakes/ppa/ubuntu noble InRelease
Reading package lists... Done
Building dependency tree. Done
Reading state information Done
74 packages can be upgraded. Run 'apt list --upgradable' to see them
g % sudo apt install -y golang
Reading package lists... Done
Building dependency tree. Done
Reading state information Done
The following additional packages will be installed
golang-1.22 golang-1.22-doc golang-1.22-go golang-1.22-src golang-doc
golang-go golang-src libpkagconf3 pkg-config pkgconf pkgconf-bin
Suggested packages:
bzr | brz mercurial subversion
The following NEW packages will be installed

golang golang-1.22 golang-1.22-doc golang-1.22-go golang-1.22-src golang-doc
golang-go golang-src libpkgconf3 pkg-config pkgconf pkgconf-bin

0 upgraded, 12 newly installed, © to remove and 74 not upgraded.

Need to get 45.9 MB of archives.

After this operation, 229 MB of additional disk space will be used.

Get:
Get:

-doc all 1.
-src all 1
amd64 1

1 http://archive.ubuntu.com/ubuntu noble-updates/main amd64 golang-1

2 http://archive.ubuntu.com/ubuntu noble-updates/main amd64 golang-1

Get:3 http://archive.ubuntu.com/ubuntu noble-updates/main amd64 golang 1 .2-2ubuntu®.3 [25.9 MB]

Get:4 http://archive.ubuntu.com/ubuntu noble-updates/main amd64 golang 1 1.22.2-2ubuntu®.3 [5,702 B]

Get:5 http://archive.ubuntu.com/ubuntu noble/main amd64 golang-src all 1.22~2buildl [5,078 B]

Get:6 http://archive.ubuntu.com/ubuntu noble/main amd64 golang-go amdé64 2 ~2buildl [43.9 kB]
7
8
9
1

RS
INTENTENTIN

Get:7 http://archive.ubuntu.com/ubuntu noble/main amd64 golang-doc all 2: 2buildl [2,788 B]
Get:8 http://archive.ubuntu.com/ubuntu noble/main amd64 golang amd64 2:1. buildl [2,736 B]

Get http://archive.ubuntu.com/ubuntu noble/main amdé4 libpkgconf3 amd64 1.8.1-2buildl [30.7 kB]
Get:10 http://archive.ubuntu.com/ubuntu noble/main amdé4 pkgconf-bin amd64 1.8.1-2buildl [20.7 kB]
Get http://archive.ubuntu.com/ubuntu noble/main amdé4 pkgconf amdé4 1.8.1-2buildl [16.8 kB]
Get:12 http://archive.ubuntu.com/ubuntu noble/main amdé4 pkg-config amdé4 1.8.1-2buildl [7,264 B]
Fetched 45.9 MB in 4s (11.2 MB/s)

Selecting previously unselected package golang-1.22-doc.

(Reading database ... 245942 files and directories currently installed.)

Preparing to unpack .../00-golang-1.22-doc_1.22.2-2ubuntu®.3_all.deb ...

https://github.com/DependencyTrack/dependency-track

42

6) Run go version to ensure that it has been installed correctly

- $ go versio
go: downloading go1.22.9 (linux/amdé64)
go version go01.22.9 linux/amdé64
s $ make build
binny version: 0.8.0
installing =benchstat =latest
tools installed

* skipping validate...
cleaning distribution directory
loading environment variables
getting and validating git state
git state =ac8be4ad4100df7385fada54e061771869070261
* pipe skipped reason=disabled during snapshot mode
parsing tag
setting defaults
partial
snapshotting
building snapshot... .16.0-SNAPSHOT -ac8be4ad
ensuring distribution directory
setting up metadata
writing release metadata
loading go mod information
build prerequisites
building binaries
partial build arget=1inux_amd64_v1
partial build =target=1inux_amd64_v1
partial build L L
building =snapshot/linux-build_linux_amd64_v1/syft
writing artifacts metadata
build succeeded after 1mi5s
thanks for using goreleaser!

7) Run the command make build

8) To make the SBOM, you will then have to run the command sudo syft / -o cyclonedx- json >
sbom.json

a) This will create the SBOM along with a file that holds the SBOM which will be located
in your downloads folder

capping@capping-00: ~

do syft / -o cycloned n > sbom.json
[sudo] password for capping:
v Indexed file system
v Cataloged contents
 Packages [12,726 packag
v File digests [202,656 files]
v File metadata [262,656 locations]
cutables [13,321 executables]
no explicit name and version provided deriving artifact ID from the given path (which is not ideal)
WARN unable to parse field data from line
WARN unable field data from line
WARN unable requirements.txt line: "- -requi s.txt" path=home/capping/Downloads/syft/syft/pkg/cataloger/python/test-fixtures/requires/requirements. txt
WARN unable to parse requirements.txt line: uirements super-secretrequirements.txt" path=home/capping/Downloads/syft/syft/pkg/cataloger/python/test-fixtures/requires/req
WARN unable to parse requirements.txt line .3.4" path=home/capping/Downloads/syft/syft/pka/cataloger/python/test-fixtures/requires/requirements. tx
WARN unable to parse requirements.txt line: "." p are/doc/python3-pip/requirement:
WARN cannot parse field from path: "home/capping/Downloa yft/pkg/cataloger/python/test- glob-paths/site-packages/z.egg-info" from lin
WARN cannot parse field from path: "home/capping/Dow y kg/cataloger /python/test-fixtures/glob-paths/site-packages/x.dist-info/METADATA" from line:
WARN unable to read python record file: %!w(s on i g number of fields)
WARN unable to read python record fil i ine 4: w nunber of fields)
WARN unable to read python record fil (cord o number of fields)
WARN unable to read python recor: (string=record on line 8: wrong number of fields
WARN cannot parse field from "home/capping/Downloa ft/syft/pkg/cataloger/python/test-fixtures/glob-paths/sit .egg-info/PKG- INF
WARN cannot parse field from "home/capping/Downloads/syft/syft/pkg/cataloger/python/test-fixtures/glob-paths/site-packages/v.DIST-INFO/METADATA" from lin
WARN cannot parse field from one/capping/Downloads/syft/syft/pkg/cataloger /python/test-fixtures/glob-paths/site-packages/w.EGG-INFO/PKG-INFO" from line:
WARN unable to discover java from opener: unable to process ed java archive (syft-main/syft/pkg/cataloger/java/test-fixtures/glob-paths/java-archives/example.par)
WARN unable to discover java ages from o unable to process nested java archive (syft-main/syft/pkg/cataloger/java/test-f /corrupt/example.jar): unable to read
WARN unable to discover java from opener: unable nested java archive (syft-main/syft/pkg/cataloger/java/test-f Lob- j i xample. jar)
WARN unable to discover java fron opener: unable cess nested java archive (syft-main/syft/pkg/cataloger/java/test-fixtures/glob-paths/java-archives/example.lpkg
WARN unable to discover ges from opener t nested java archive (syft-main/test/cli/test-fixtures/image-unknowns/unknown-unreadable.jar): unable to
WARN unable to discover j acka nested java archive (s: i /pkg/cataloger/java/test-fixtures/glob-paths/ja]
WARN unable to discover java from open nested java archive /test-fixtures/image-unknowns/unknown-readable
WARN unable to discover j fron opener: 0 nested java archive /cataloger/java/test-fixtures/glob-paths/java-archives/example.
WARN unable to discover fron opener t nested java archive (syft-main/syft/pkg/cataloger/java/test-fi /alob-paths/java-archives/exanple
WARN unable to discover je acka e nested java archive (syft-main/syft/pkg/cataloger/java/test-f glob-paths/java-archive mple.
WARN unable to discover process nested java archive (syft-main/syft/pkg/cataloger/java/test-fixtures/glob-paths/java-archives/example
WARN unable to discover j 8 process nested java archive (syft-main/syft/pkg/cataloger/java/test-fixtures/glob-paths/java-archives/exanple
WARN unable to discover j nested java archive (syft-main/syft/pkg/cataloger/java/test-fixtures/glob-paths/java-archives/example
WARN unable to 1 0 invalid synta:
WARN unable s 5 a "OXE": invalid synta:
WARN unable . ing "OXE": invalid syntax

43

9) From here you will then have to go to localhost:8080 on the browser of your choice and log in
using the given credentials, admin:admin. Once prompted, you will enter the username and then
change the password to whatever you would like.

Login

Username

A | |username

dependency

Password

& | Password

10) Once you gain access to dependency-track, you will add yourself as a user by going to the menu
on the left side, selecting Administration, then going to Access Management, and then Managed
Users. From there, you will be given the option to add yourself.

11) When that is completed, go to the projects menu and create a project. Input all of the information
that you think may be useful. From there, you will go to the components tab and select and
upload the BOM.

a) Once uploaded, it will take a little while to process and analyze, but slowly results will

start to show on the dashboard and other menus.

44

SBOM Benefits

As discussed previously, the Software Bill of Materials provides a great amount of insight
on the daily operations and security stance of software systems. SBOMs are a crucial tool that
aids in identifying vulnerabilities, searching for any outdated components, and quickly dealing
with any threats that may arise from any of the installed elements. Although SBOMs are fairly
new to most industries, there are several different ways one can take advantage of what it has to
offer. Below is a list of some of the many benefits that SBOMs provide and how you can use this
information to perform further research and analysis.

Identifying and Avoiding Vulnerabilities

With the integration of a Software Bill of Material, one of the first items you are going to
notice will be the amount of vulnerabilities present in your environment. When you first open the
SBOM, you will be greeted with an organized dashboard that contains several different pieces of
information. Immediately, your eyes are brought to a line chart that contains information on all
of your vulnerabilities, separating them into categories including Critical, High, Medium, Low,
and Unassigned. If you do more research and dig further beyond the numbers, you will be able to
find a list of all vulnerabilities that contains information on what component the vulnerability is
present in, the CVE, severity, and where the vulnerability information is coming from.

Dashboard
PORTFOLIO l'l'i CEIIE @ @ e
» Projects

Components

& Audit Vulnerabilities [33s0
Vulnerabilities

Licenses

Tags | Search

CLOBALAUDIT Component 4 Version 4 Group Vulnerability 4 Sseverity Analyzer 4 AttributedOn 4 Analysis 4

Vulnerability Audit

[5)

411 NVD NVD 13 Nov 2024

Policy Violation Audit
2.706.0 NVD 13 Nov 2024

ADMINISTRATION
6.5.0 org.apache.bcel NVD 13 Nov 2024

Policy Management

1311 13 Nov 2024

Administration

2020.6.20

Z

13 Nov 2024

18 13 Nov 2024

Z

z z z
2
S S S

2oLl 13 Nov 2024

z
Z
S

13 Nov 2024

z
<
S
c [5) Q

45

Once you have analyzed all of the information in the previous image, you can go further
and click the down arrow at the start of each row, which will bring you to a new page that will
explain the vulnerability even more. From there, you will be given the opportunity to input
comments on the vulnerability to stay organized and project your thoughts on how to deal with
1t.

~ s
[< Ev

Component 4 Version 4 Vulnerability 4 Severity Analyzer 4 AttributedOn 4 Analysis 4 Suppressed %

411 NVD . Critical [nvo 13 Nov 2024

Description Audit Trail

A possible escalation to RCE vulnerability exists when using YAML serialized columns in
Active Record < 7.0.3.1, <6.1.6.1, <6.0.5.1 and <5.2.8.1 which could allow an attacker,
that can manipulate data in the database (via means like SQL injection), the ability to
escalate to an RCE.

Comment

The amount of information that is provided by the SBOM regarding vulnerabilities is
endless. Around each corner, you will always find new information that is crucial to keeping
your environment safe. Using the provided information will guide you to better identify and
avoid all vulnerabilities. Although it does not provide a step-by-step process to mitigate any
risks, it gives you most of the necessary information for you to go and do it yourself.

Open Communication and Collaboration

Something that always has been and always will be important is communication. You see
on every job posting that having good communication is nonnegotiable and expected when
joining a company. When a team is good at communicating, they instantly make tasks easier to
manage. When considering vulnerabilities and CVEs, communicating is necessary to lowering
and even mitigating any risk that may be present. Having an SBOM that is visible between
multiple teams is a perfect way to ensure that everyone is aware of all risks and potential
vulnerabilities. Implementing an SBOM brings a large amount of transparency to a company and
warns people what is happening behind the scenes. It decreases the amount of time and effort
that goes into making sure each and every team is aware of what is occurring in any software
components, dependencies, and metadata. In addition, it allows teams that are not wellversed in a
certain area to get a rundown of another area using the SBOM and additional resources.

46

Licensing Compliance

Another feature of the Software Bill of Materials that is extremely beneficial would be
the ability to check licensing compliance. At any company, large or small, licenses can be tough
to keep track of. People are constantly asking for new licenses or to renew existing ones. SBOMs
will inform authorized users who have access to the tool of any licenses associated with each
piece of their environment. From there, users are able to monitor the licenses and look further
into them to see if they are required or if there are any legal obligations that they need to focus
on related to the licenses. As written earlier, the SBOM offers a large amount of transparency
that also involves the need of licensing compliance

47

Industry Usage

Intro

The virtualization technology utilized in the project plays a critical role in modern
industry usage, enabling organizations to optimize hardware utilization and enhance flexibility
when it comes to operating virtual environments. The kernel-based virtual machine the project
leverages allows Linux to act as a hypervisor, which is a widely adopted practice in enterprise
environments, because of the performance and scalability benefits it poses. CVEs are critically
studied in the industry, as the security they threaten can have severe implications for virtualized
infrastructures. The standard x86 server architecture the project is built on also supports
scalability and compatibility, making it a leading foundation for real-world deployment of secure
and efficient virtualized environments. Large-scale infrastructure providers address data
management through the use of hyperscale cloud systems. This integration of scalability security
and data flexibility drives the relevance of virtualization technology to meet the demands of
today’s industry.

CVEs

The objective of CVEs is to build awareness and share information about security
loopholes and the effects they might have on a system. For organizations actively managing
security threats, the studying of CVEs is paramount for these companies to find security breaches
and trends, and to update their systems to fight security flaws. Security teams use CVEs to assess
the severity and potential impact of vulnerabilities in their systems. High severity CVEs are
obviously prioritized over low severity, as the Common Vulnerability Scoring System (CVSS)
helps differentiate to save time and resources. Organizations use CVEs to track which
vulnerabilities are ignorable and which ones require patches. Analyzing the context and urgency
of a CVE requires consideration of real-world factors, such as:

1. Whether the vulnerability is exploitable in a service's default configuration or only under
very specific configurations.

2. Whether a reachable path to the vulnerable code exists.

3. Whether the software library vulnerability has a code precondition (meaning someone
must use it in a vulnerable manner).

4. The network environment and the overall security mechanisms applied to the vulnerable
software.

Organizations might not interact directly with the CVE database but will utilize tools that
do to save time, money, and resources. Scanners like Nessus and Qualys, which specialize in
cloud security, rely on CVE databases to detect unpatched and exploitable vulnerabilities in
networks and systems. CVEs are integrated directly into threat intelligence feeds, assisting
organizations in anticipating attacks before they happen and mitigating the chance of attacks

48

breaching through and targeting specific vulnerabilities. Red Hat is a subsidiary of IBM and
provides open-source products to enterprises. They use CVE IDs to track security vulnerabilities
and to maintain their security update database. Organizations now more than ever generate
SBOMs to inventory components and map them to known CVEs for proactive risk management.
Since SBOMs list software libraries, dependencies, and third-party components in use, these
components can be checked across CVE databases to determine how many vulnerabilities there
are and the specifics of each of them. Nowadays, many SBOM creation software automatically
cross-check the results of SBOM generation with CVE databases and will provide the user with
an in-depth summary of how at risk they are. This tool allows organizations to identify risks and
take action proactively.

Another way CVEs are utilized in industry is through regulatory frameworks and industry
standards. These standards often require organizations to address CVEs as part of compliance.
Auditors use CVE tracking to verify that organizations are managing vulnerabilities in a safe,
timely, and effective way.

Servers

Throughout the progression of this project, we have consistently worked hard in creating
the best possible environment that would give us the greatest opportunities in developing our
skills and knowledge. When considering our project, one of the most crucial components of it is
the server. In a way, the server is the backbone and foundation of not only just our project, but
also modern computing as a whole. We have worked hard learning the most we possibly can that
will soon translate to the work we will be executing post-college as Cybersecurity professionals.
All of our work is easily able to be connected to real-world scenarios and has been nothing but
beneficial for us to learn.

At the very start of the project, we built our system and installed Ubuntu on our server
along with configuring and starting up a couple of virtual machines using Virtual Machine
Manager. In the real-world, virtual machines are used to simulate potential changes in an
environment instead of going and testing on the host machine. They can also be used to study
any security vulnerabilities that may be of concern. Being able to build our server up to suit our
needs has been a great learning experience and will surely benefit us in years to come.

In addition to the creation of the server, we also spent a large amount of time installing
tools, such as Dependency-Track and Syft, that could be used to help improve supply chain
security and identify vulnerabilities. In our case, we were more focused on using those
vulnerabilities for exploiting rather than vulnerability patching. The Software Bill of Materials
played a key part in ensuring the safety of our server and environment. One of the main reasons
we decided to implement it was because we knew it would be a a good tool to learn about. In

49

class, we had multiple guest speakers talk to us about the importance of SBOM’s and how it is a
new focus point for a lot of companies. They are now being seen as a tool that is essential to
implement due to its ability to aid in security standards compliance.

Overall, the server knowledge we have accumulated throughout the completion of this
project has given us the opportunity to gain first-hand experience looking into the security,
scalability, and integrity of technical environments. Having this knowledge will lead us to places
that will provide us more opportunities to learn and grow even more beyond this project. The
technical skills we have gained in the past few months, along with soft skills such as adaptability
and problem-solving, has taught us everything we need to know that will enable us to work
efficiently in the a workplace environment post-graduation.

Hypervisors

A hypervisor is the software that allows the use of virtualisation, it acts as the
intermediary between the hardware and the virtual machines. The way a hypervisor works is by
allocating a specific amount of the resources from the host machine to use for virtual machines.
These resources include parts like the CPU and memory to be used for the virtual machines.

There are several benefits that come with the use of hypervisors in the real world, such as
hardware independence, overall efficiency, scalability, and portability. The hardware
independence that comes with the use of a hypervisor and virtual machines can be very useful,
for example you can run operating systems with different architecture from your host machine
because of the independence. With a hypervisor, you can configure it to immediately create your
virtual environment which will greatly save time which is often manually spent installing
software or operating systems. Hypervisors can allocate a computer's resources specifically so
you can run multiple virtual machines on one host machine. Then you can run multiple different
workloads on one physical machine instead of using multiple physical machines to do so.

One use case that can be seen in the real world with hypervisors would be desktop
virtualization. An employee can use desktop virtualization running on a server to access their
workstation environment and files remotely. Another use case where a hypervisor could apply
would be failure recovery. With a hypervisor you can create a snapshot of a virtual machine's
state and return to that exact state whenever you want. If there is a system failure, but you have a
snapshot of a previous version of the virtual machine, you can easily boot that up and restore the
system to that version. Hypervisors can provide many different benefits to a company if they
choose to implement them.

50

Hyperscale Cloud Computing

Hyperscale is a distributed computing environment and architecture that is designed to
provide extreme scalability to accommodate extremely large workloads. Hyperscale data centers
are significantly larger than on-premises data centers and can handle more data. Now more than
ever, organization projects require more than they used to to be completed. Many organizations
require hyperscale computing, which provides more benefits compared to enterprise data centers.
With hyperscale computing, companies can gain access to, and even build almost infinitely
scalable databases. Hypervisors inside data centers use abstraction layers to let apps in virtual
machines be relocated from one physical location to another. All of this allows companies to
maintain thousands of servers, with some of the largest companies in the world dedicating tens of
thousands of square feet of space to house tens of thousands of servers. Within the last 20 years,
hyperscale computing has expanded to adopt cloud solutions, which opens the door to more
services and enterprise applications. These hyperscale cloud systems manage scale computing,
storage, and network resources even more efficiently than traditional computing environments.

Hyperscale cloud systems are typically managed by large providers like Amazon Web
Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). These companies not only
offer computing and storage, which is widely used by many, but also offer machine learning
solutions, virtual machine access, Al integration, and more. These systems are widely used in all
aspects of industry today, reaching corners like E-commerce, finance, and even gaming media.

Our KVM project involving the use of a Linux virtualization security setup aligns with
modern-day usage of hyperscale cloud systems in a variety of ways. Hyperscalers rely on mass
virtualization to manage resource allocation across massive data centers. Our project mirrors this
essential function by implementing and hardening virtualization technology. Our hypervisor
divides the resources from our host machine to our VMs, ensuring each one operates in a
logically isolated environment with carefully managed and secure resources. This approach
reflects the same process of developing security profiles that drive hyperscale cloud systems in
today’s industry.

51

Future Plans
Introduction

Throughout the semester, we have been fully focused on creating the greatest possible
project that would enable us to learn and grow as we go. We have spent countless hours in the
Enterprise Computing Research Lab working on setting up our environment, researching CVEs
and other interesting topics, and communicating with Fernando Pizzano on our progress. Each
member of our team has been fully focused on completing the deliverables given to us by
Professor DeCusatis and Fernando which has led us to the completion of the project. As we look
back on our progress, we are all exceedingly proud of the work we have completed and the
research executed. With that being said, we are not ready to conclude our project and have
created a list of items we would like to complete beyond the completion of this semester. The
“Future Plans” section will detail our next goals for the project and what we would like to look
into for the upcoming months.

CVE Research

While working on our project, a lot of time and effort went into researching CVEs and
finding one we could exploit in our environment. We gathered a list of vulnerabilities and wrote
down a potential plan that would allow us to exploit them. After three attempted exploitations,
we decided it was time to move along with our project and focus on other deliverables. With the
completion of the semester, we will receive a little more freedom and be able to focus on
anything we wish. Finding more CVEs is something we are very interested in and would love to
be able to fully exploit a few. Identifying CVEs to exploit remains an important aspect of our
project, as it plays a large role in further research and analysis.

SBOM Research

As the end of the semester neared, we decided that implementing an SBOM would be a
good addition to the work we had already completed. SBOMs are a fairly new component of
cybersecurity and we loved the idea of experimenting with it and learning more about how they
work. Because we did not know too much about SBOMs, we were not aware of how helpful it
could have been for our project. Being able to get a list of CVEs that we can potentially exploit is
very beneficial and makes our project a little bit easier. With this being said, we would love to
utilize the SBOM more in the future now that we know what it is fully capable of. Being able to
formulate new ideas and plans as we go with the help of the SBOM will help aid the
development of our project immensely. In the coming months, we plan on fully utilizing what the
Software Bill of Material has to offer to make a stronger project. We believe this will be of great
benefit and has no real downsides.

52

Al Log Analysis

The last addition we would like to include when it comes to technical work would be
implementing Al to analyze the logs outputted by our server. As we worked towards the
exploitation of CVE-2016-2184 and CVE-2024-8354, we thought it would be of great assistance
to use Al to break down the logs for us and give us a quick summary of each of them. To do this,
we aim to introduce machine learning. Machine learning will enable us to find any complex
information that would be tough to identify manually. In addition, it could help us group and
organize the logs so we are easily able to sort through them as opposed to reading through each
log one by one. With the help of machine learning, we will be able to go further in exploiting
CVEs, as we will understand more of the errors we are receiving when exploiting.

Competitions

We are advancing our capstone project into spring 2025, with plans to enter into regional
competitions. On November 8th, 2024, we showcased our work at the inaugural Mid-Hudson
Valley TechMeet at Bard College. Looking ahead, we aim to present our project at events such as
the 2025 Mid Hudson Region Tech Fest in Kingston, NY and the 2025 Mid-Hudson Regional
Business Plan Competition at Marist College. These venues offer great opportunities to network
with industry professionals and garner valuable feedback on our research, development, and
implementation of this project.

Publication

We aim to publish our research in a reputable technical journal upon completing our
work. As a group, we would make final revisions to ensure our work adheres to the strict
guidelines of academic publications specializing in topics such as cybersecurity, virtualization,
and related fields. One primary target for submission is the Institute of Electrical and Electronics
Engineers (IEEE), an organization that aligns well with the scope and technical depth of our
research. Once we have refined our work to meet the standards of the publication, we will
formally submit it to IEEE and other publications for consideration with the goal of having our
work officially published and shared with the broader cybersecurity community.

53

References

“Libvirt vs QEMU: What are the differences?,” StackShare,
https://stackshare.io/stackups/libvirt-vs-qgemu#:~:text=In%20summary%2C%20QEMU%?2
0is%?20primarily,management%?20interface%20across%20different%20hypervisors

C. Goodman, “What is a CVE? common vulnerabilities and exposures defined,” Fortinet,
https://www.fortinet.com/resources/cyberglossary/cve

“CVE-2024-8354,” CVE,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-8354

Chatgpt, https://chatgpt.com/

Schumilo, “Schumilo/vUSB{,” GitHub,
https://github.com/schumilo/vUSB{f?tab=readme-ov-file

“CVE-2016-2184,” Ubuntu, https://ubuntu.com/security/CVE-2016-2184#notes

“CVE-2016-2184 Detail,” NVD,
https://nvd.nist.gov/vuln/detail/ CVE-2016-2184#match-11535809

“CVE-2016-2184,” Ubuntu, https://ubuntu.com/security/CVE-2016-2184

“Executive order on improving the nation’s cybersecurity,” Executive Order on Improving
the Nation’s Cybersecurity,
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-orde
r-on-improving-the-nations-cybersecurity/

H. L, “SBOMS and the importance of inventory,” NCSC,
https://www.ncsc.gov.uk/blog-post/sboms-and-the-importance-of-inventory

S. Wickramasinghe and S. Watts, “The CVE & CVE Management, explained,” Splunk,
https://www.splunk.com/en_us/blog/learn/cve-common-vulnerabilities-exposures.html

S. Menashe, “Why do we need real-world context to prioritize cves?,” Why Do We Need
Real-World Context to Prioritize CVEs?,
https://www.darkreading.com/cyber-risk/why-do-cve-scores-need-real-world-context-to-pr
ioritize

“What is a CVE?,” Red Hat - We make open source technologies for the enterprise,
https://www.redhat.com/en/topics/security/what-is-cve

54

“What is a virtual machine? VM uses and benefits | google cloud,” Google,
https://cloud.google.com/learn/what-is-a-virtual-machine

What is a hypervisor? - hypervisor explained - AWS,
https://aws.amazon.com/what-is/hypervisor/

P. Powell and 1. Smalley, “What is hyperscale?,” IBM,
https://www.ibm.com/topics/hyperscale

E. Plesky, “What is a Hyperscaler cloud?,” Plesk,
https://www.plesk.com/blog/various/what-is-a-hyperscaler-cloud/

“What is a hyperscaler?,” Red Hat - We make open source technologies for the enterprise,
https://www.redhat.com/en/topics/cloud-computing/what-is-a-hyperscaler

“2025 mid hudson region tech fest - sponsor registration,” Home,
https://www.nyscate.org/NY SCATE/iCore/Events/Event _display.aspx?EventKey=MHRTF
24

“Mid-Hudson Regional Business Plan Competition,” Marist College,
https://www.marist.edu/computer-science-math/mid-hudson-regional-business-plan-compe
tition

IEEE - The World’s largest technical professional organization dedicated to advancing

technology for the benefit of humanity., https://www.ieee.org/

“The IEEE article submission process,” IEEE Author Center Journals,
https://journals.ieeeauthorcenter.ieee.org/submit-your-article-for-peer-review/the-ieee-artic
le-submission-process/

“The IEEE article submission process,” IEEE Author Center Journals,
https://journals.ieeeauthorcenter.ieee.org/submit-your-article-for-peer-review/the-ieee-artic
le-submission-process/

“Publish with IEEE Journals,” IEEE Author Center Journals,
https://journals.ieeeauthorcenter.ieee.org/

“How to publish your research,” Author Services,
https://authorservices.taylorandfrancis.com/publishing-your-research/

“Krebs on security,” Krebs on Security, https://krebsonsecurity.com/

	
	Secure Enclaves for Linux with KVM
	Introduction
	Abstract
	Summary

	Contributions
	Introduction
	Nathaniel Desany
	Nicholas Phillips
	
	Zachary VanDerVelden

	Project Plan
	Weekly Traffic Light Reports
	Introduction
	September 18, 2024
	September 25, 2024
	October 2, 2024
	October 9, 2024
	October 16, 2024
	October 23, 2024
	October 30, 2024
	November 6, 2024
	November 13, 2024
	November 20, 2024
	
	November 27, 2024
	December 4, 2024
	December 11, 2024

	Infrastructure Design Diagrams
	Deployment
	Installation of Initial Operating System
	Virtualization and Hypervisor Setup

	Common Vulnerabilities and Exposures
	Overview
	Classification
	CVE-2024-8354
	Final Analysis

	CVE-2016-2184
	Final Analysis

	Software Bill of Materials
	Overview
	Creating the SBOM
	SBOM Benefits
	Identifying and Avoiding Vulnerabilities
	Open Communication and Collaboration
	Licensing Compliance

	Industry Usage
	Intro
	CVEs
	Servers
	Hypervisors
	
	Hyperscale Cloud Computing

	Future Plans
	Introduction
	CVE Research
	​
	SBOM Research
	AI Log Analysis
	Competitions
	Publication

	References

